Communication

Chelate and Pincer Carbene Complexes of Rhodium and Platinum

 Derived from Hexaphenylcarbodiphosphorane, PhPCPPhKazuyuki Kubo, Nathan D. Jones, Michael J. Ferguson, Robert McDonald, and Ronald G. Cavell J. Am. Chem. Soc., 2005, 127 (15), 5314-5315• DOI: 10.1021/ja0502831 • Publication Date (Web): 22 March 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 2 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Chelate and Pincer Carbene Complexes of Rhodium and Platinum Derived from Hexaphenylcarbodiphosphorane, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}=\mathrm{PPh}_{3}$

Kazuyuki Kubo, ${ }^{\dagger}$ Nathan D. Jones, ${ }^{\ddagger}$ Michael J. Ferguson, ${ }^{\ddagger}$ Robert McDonald, ${ }^{\ddagger}$ and Ronald G. Cavell ${ }^{\star}, \ddagger$
Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan, and Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G $2 G 2$

Received January 16, 2005; E-mail: ron.cavell@ualberta.ca

Cyclometalated "pincer" complexes (Chart 1, A) have become important in the last 30 years, ${ }^{1}$ both in the variety of known compounds and in the range of their catalytic applications. ${ }^{2}$ Reaction types now include diverse transformations: alkane dehydrogenation, ${ }^{2 a, b}$ activation of small molecules (e.g., $\mathrm{CO}_{2}{ }^{2 \mathrm{c}}$ and $\mathrm{N}_{2}{ }^{2 \mathrm{~d}}$), $\mathrm{C}-\mathrm{X}$ bond formation ${ }^{2 e}$ and activation ${ }^{2 f, g}(\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O})$, polymerization of alkynes ${ }^{2 \mathrm{~h}}$ and alkenes, ${ }^{2 \mathrm{i}, \mathrm{j}}$ and transfer hydrogenation catalysis. ${ }^{2 \mathrm{k}}$ Applications as sensors ${ }^{1 a, 21}$ and "molecular switches" ${ }^{2 m}$ have also emerged.

A few cyclometalated pincer N -heterocyclic carbenes (NHCs) (Chart 1, B; E $=\mathrm{C}$) have recently been reported by Crabtree ${ }^{3}$ and Danopoulos. ${ }^{4}$ Related $C, N, C(N H C)$ pincers (Chart 1, B; E $=\mathrm{N}$) have been used as catalysts in alkene oligomerization and polymerization, ${ }^{2 i . j}$ Heck, ${ }^{3 a-c, 5}$ Sonogashira, ${ }^{6}$ transfer hydrogenation, ${ }^{3,4 \mathrm{~b}}$ and oxidative cleavage ${ }^{3 e}$ reactions.

In extending our studies of phosphorus-stabilized pincer carbene complexes of the late metals, ${ }^{7,8}$ we have investigated the chemistry of the carbodiphosphoranes, $\mathrm{R}_{3} \mathrm{P}=\mathrm{C}=\mathrm{PR}_{3}\left(\mathrm{R}_{3} \mathrm{P}^{+}-\mathrm{C}^{2-}{ }^{+}{ }^{+} \mathrm{PR}_{3}\right)$. Although a formal carbene resonance form (six valence electrons on C) cannot be drawn for these compounds, we feel that they have strong (and underappreciated) parallels ${ }^{9,10}$ with Bertrand- and Arduengo-type carbenes in that they are stable, neutral, two-electron σ-donors, with bent structures in the solid state, and have ylidic resonance forms that place eight valence electrons on the "carbenic" carbon. While the NHCs are recognized as "push-push" carbenes ${ }^{11}$ and the Bertrand-type (phosphanyl-silyl) carbenes as "pushpull", ${ }^{11}$ carbodiphosphoranes may be conceptualized as a "pullpull" variety considering that the positively charged phosphonium substituents withdraw electron density from the central, formally C^{2-} atom to give it a distinct carbenic character. Here, we describe new members of the small class of C, C, C pincer complexes and introduce a unique category of pincer carbenes (Chart 1, C) which, unlike B, incorporates only a single carbene donor and two, as opposed to one, cyclometalated phenyl rings. $\mathrm{Rh}(\mathrm{III})$ and $\mathrm{Pt}(\mathrm{II})$ prototypes are presented, with the Rh case also yielding a $\mathrm{Rh}(\mathrm{I})$ C, C bidentate carbene intermediate.

Treatment of $[\mathrm{RhCl}(\operatorname{cod})]_{2}(\operatorname{cod}=1,5$-cyclooctadiene $)$ with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}=\mathrm{PPh}_{3}(\mathbf{1})^{12}$ gave (cod) $\mathrm{Rh}\left[\eta^{2}-\mathrm{C}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{Ph}_{2}\right\}\left\{\mathrm{PPh}_{3}\right\}\right]$ (2) in 78% yield and the phosphonium salt, $\left[\mathrm{HC}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Cl}]$ (Scheme 1). Complex $\mathbf{2}$ is air sensitive but is thermally stable under an inert atmosphere to at least $60^{\circ} \mathrm{C}$. We propose an initial bridge splitting coordination of $\mathbf{1}$ to Rh followed by phenyl orthometalation at one end of the ligand to form a putative hexacoordinated $\mathrm{Rh}(\mathrm{III})-$ hydride intermediate which is dehydrohalogenated by free $\mathbf{1}$.

Structural characterization of 2 (Figure 1) shows a $\mathrm{Rh}(\mathrm{I})$ atom in a characteristic distorted square-planar coordination geometry. The $\mathrm{C}(1)$ center is trigonal planar (sum of angles $=360.0^{\circ}$),

[^0]
Chart 1

Scheme 1. Synthesis of 2

indicative of sp ${ }^{2}$ hybridization. The $\mathrm{Rh}-\mathrm{C}(1)$ bond (2.165(2) \AA) is longer than those reported for $\mathrm{Rh}-\mathrm{NHC}$ complexes (2.00-2.10 $\AA)^{13}$ and can be regarded as a single bond. The $\mathrm{C}(1)-\mathrm{P}(1)$ and $\mathrm{C}(1)-\mathrm{P}(2)$ distances are indistinguishable despite the asymmetry of the ligand. Complex $\mathbf{2}$ can be formulated as a 16 -electron $\mathrm{Rh}(\mathrm{I})$ complex wherein the central C atom acts as a net neutral, 2 -electron, σ-donor. The bidentate carbene ligand in $\mathbf{2}$ is reminiscent of our C, N-bidentate bis(phosphoranimine) carbene complex of Pt (see Supporting Information, Figure S1). ${ }^{7}$
Reaction of $\mathbf{2}$ with 2 equiv of PMe_{3} gave the $\mathrm{Rh}($ III $) C, C, C$ pincer carbene complex, $\mathrm{HRh}\left(\mathrm{PMe}_{3}\right)_{2}\left[\eta^{3}-\mathrm{C}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right]$ (3), in 85% yield (Scheme 2) by replacement of the cod ligand and a second phenyl orthometalation event on the free PPh_{3} end of the ligand. Complex 3 represents a distinctly new class of pincer complexes (Chart 1, C) and is the first example of a pincer carbene complex derived from 1. The second orthometalation step is probably facilitated by (i) a strong σ-donor contribution from PMe_{3} and (ii) displacement of cod to alleviate the requirement for the mutual cis orientation of ancillary ligands. Such C, C, C pincer systems are rare;

Figure 1. ORTEP illustration of the molecular structure of 2 (20% ellipsoids) showing only cod H atoms and only the ipso carbon atoms of the phenyl rings, except for those in the orthometalated ring. Selected bond lengths (A) and angles $\left({ }^{\circ}\right): \mathrm{Rh}-\mathrm{C}(1) 2.165(2), \mathrm{Rh}-\mathrm{C}(12)$ 2.072(2), $\mathrm{C}(1)-$ $\mathrm{P}(1) 1.692(2), \mathrm{C}(1)-\mathrm{P}(2) 1.693(2), \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(2) 124.50(13)$.

Scheme 2. Synthesis of 3

Figure 2. ORTEP representation of the molecular structure of 3 (20\% ellipsoids). Only the hydride H atom is shown. All but the ipso C atoms of the phenyl rings are omitted except for those on the orthometalated rings. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Rh}-\mathrm{C}(1)$ 2.202(3), $\mathrm{C}(1)-\mathrm{P}(1)$ $1.672(3), \mathrm{C}(1)-\mathrm{P}(2) 1.675(3), \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(2) 138.32$ (18).

Scheme 3. Synthesis of 4

we know of only two other reported types: a Pt complex of ours ${ }^{8}$ (Figure S 1) and three substitutional variants of a group of $\mathrm{Pd}-$ NHC complexes of type $\mathrm{B}(\mathrm{E}=\mathrm{C})$ from the groups of Crabtree ${ }^{3 \mathrm{a}}$ and Danopoulos. ${ }^{4 c}$

The Rh center in $\mathbf{3}$ has a distorted octahedral geometry (Figure 2). The $\mathrm{Rh}-\mathrm{C}(1)$ bond $(2.202(3) \AA)$ is slightly longer than that in 2. The sum of the angles around $C(1)$ is 359.83°, indicative once again of sp^{2} hybridization. We formulate $\mathbf{3}$ as an 18-electron Rh(III) species in which the central carbon atom, again, acts as a neutral, 2-electron, σ-donor.

Although the $\mathrm{C}(1)-\mathrm{P}$ bonds in $\mathbf{2}$ and $\mathbf{3}$ are in the range previously reported for $L_{n} \mathrm{M}-\mathrm{C}\left(\mathrm{PPh}_{3}\right)_{2}$ complexes $(\mathrm{M}=\mathrm{Re}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Au}$; $1.66-1.78 \AA),{ }^{14}$ those in $2($ av $1.693(2) \AA)$ are slightly longer than those in 3 (av 1.674(3) Å), indicating lower $\mathrm{C}(1)-\mathrm{P}$ bond orders in 2 . The stronger $\mathrm{Rh}-\mathrm{C}(1)$ bond in 2 may act to reduce the negative charge on $C(1)$ and, consequently, the π-donation from $\mathrm{C}(1)$ to P . The $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(2)$ angle $\left(138.32(18)^{\circ}\right)$ in $\mathbf{3}$ is the greatest throughout the range of complexes of $\mathbf{1}\left(123.1-136.0^{\circ}\right),{ }^{14}$ including 2 (124.50(13) ${ }^{\circ}$).

Reaction of 1 with $\left[\mathrm{Me}_{2} \mathrm{Pt}\left(\mathrm{SMe}_{2}\right)\right]_{2}$ gave an analogous C, C, C pincer carbene complex of $\mathrm{Pt}(\mathrm{II})$ (4) directly via double orthometalation with elimination of 2 equiv of CH_{4} (Scheme 3). No intermediate species were observed. The complex is stable in the same fashion as 2. Full details are given in the Supporting Information.

Preliminary DFT electronic structure calculations ${ }^{15}$ using the model complex, $\mathrm{HRh}\left(\mathrm{PH}_{3}\right)_{2}\left[\eta^{3}-\mathrm{C}\left\{\mathrm{H}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right]$ (3'), revealed one net bonding MO of σ symmetry with respect to the $\mathrm{Rh}-\mathrm{C}_{\text {carbene }}$ axis, which is best described as a bonding overlap between an sp^{2} hybridized orbital on C and a d-orbital on Rh. The HOMO is predominantly a $\mathrm{C}_{\text {carbene }} \mathrm{p}_{z}$-orbital with a small antibonding d-orbital
contribution on Rh (Figure S 2). This picture is similar to that given by Le Floch and co-workers for the HOMO of the S, C, S pincer carbene complex, $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Pd}\left[\mathrm{C}\left\{\mathrm{Ph}_{2} \mathrm{P}=\mathrm{S}\right\}_{2}\right] .{ }^{16}$ Calculated Mulliken charges for $\mathbf{3}^{\prime}$ are $\mathrm{Rh}+0.26, \mathrm{C}_{\text {carbene }}-0.87, \mathrm{P}+0.40$ (including H atoms), and $\mathrm{C}_{\text {phenyl }}+0.17$. Detailed calculations are in progress as are reactivity studies of these new pincer carbene complexes.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and ACS-PRF (35314-AC3) for financial support. K.K. thanks the Japan Ministry of Education, Culture, Sports, Science and Technology for an Overseas Visiting Scholarship. N.D.J. thanks the Killam Trust for a postdoctoral fellowship.

Supporting Information Available: Synthetic and characterization data for $\mathbf{2}, \mathbf{3}$, and 4, crystallographic data in CIF for $\mathbf{2} \cdot 2.5 \mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathbf{3}$, calculation details, and selected MO representations for $\mathbf{3}^{\prime}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 37503781. (b) van der Boom, M. E.; Milstein, D. E. Chem. Rev. 2003, 103, 1759-1792. (c) Slagt, M. Q.; van Zwieten, D. A. P.; Moerkerk, A. J. C. M.; Gebbink, R. J. M. K.; van Koten, G. Coord. Chem. Rev. 2004, 248, 2275-2282.
(2) (a) Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. J. Am. Chem. Soc. 1999, 121, 4086-4087. (b) Jensen, C. Chem. Commun. 1999, 2443-2449. (c) Lee, D. W.; Jensen, C. M.; Morales-Morales, D. Organometallics 2003, 22, 4744-4749. (d) Vigalok, A.; Ben-David, Y.; Milstein, D. Organometallics 1996, 15, 1839-1844. (e) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009-3066 and references therein. (f) Liou, S.-Y.; van der Boom, M. E.; Milstein, D. Chem. Commun. 1998, 687-688. (g) Gandelman, M.; Milstein, D. Chem. Commun. 2000, 1603-1604. (h) Yao, J.; Wong, W. T.; Jia, G. J. Organomet. Chem. 2000, 598, 228-234. (i) McGuinness, D. S.; Gibson, V. C.; Steed, J. W. Organometallics 2004, 23, 6288-6292. (j) McGuinness, D. S.; Gibson, V. C.; Wass, D. F.; Steed, J. W. J. Am. Chem. Soc. 2003, 125, 1271612717. (k) Dani, P.; Karlen, T.; Gossage, R. A.; Gladiali, S.; van Koten, G. Angew. Chem., Int. Ed. 2000, 39, 743-745. (1) Albrecht, M.; Gossage, R. A.; Lutz, M.; Spek, A. L.; van Koten, G. Chem.-Eur. J. 2000, 6, 1431-1445. (m) Steenwinkel, P.; Grove, D. M.; Veldman, N.; Spek, A. L.; van Koten, G. Organometallics 1998, 17, 5647-5655.
(3) (a) Gründemann, S.; Albrecht, M.; Loch, J. A.; Faller, J. W.; Crabtree, R. H. Organometallics 2001, 20, 5485-5488. (b) Peris, E.; Loch, J. A.; Mata, J.; Crabtree, R. H. Chem. Commun. 2001, 201-202. (c) Loch, J. A.; Albrecht, M.; Peris, E.; Mata, J.; Faller, J. W.; Crabtree, R. H. Organometallics 2002, 21, 700-706. (d) Crabtree, R. H. Pure Appl. Chem. 2003, 75, 435-443. (e) Poyatos, M.; Mata, J. A.; Falomir, E.; Crabtree, R. H.; Peris, E. Organometallics 2003, 22, 1110-1114. (f) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239-2246.
(4) (a) Tulloch, A. A. D.; Danopoulos, A. A.; Tizzard, G. J.; Coles, S. J.; Hursthouse, M. B.; Hay-Motherwell, R. S.; Motherwell, W. B. Chem. Commun. 2001, 1270-1271. (b) Danopoulos, A. A.; Winston, S.; Motherwell, W. B. Chem. Commun. 2002, 1376-1377. (c) Danopoulos, A. A.; Tulloch, A. A. D.; Winston, S.; Eastham, G.; Hursthouse, M. B. J. Chem. Soc., Dalton. Trans. 2003, 1009-1015. (d) Danopoulos, A. A.; Tsoureas, N.; Wright, J. A.; Light, M. E. Organometallics 2004, 23, 166168. (e) Danopoulos, A. A.; Wright, J. A.; Motherwell, W. B.; Ellwood, S. Organometallics 2004, 23, 4807-4810.
(5) Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248, 2247-2273.
(6) Mas-Marza, E.; Segarra, A. M.; Claver, C.; Peris, E.; Fernandez, E. Tetrahedron Lett. 2003, 44, 6595-6599.
(7) Jones, N. D.; Lin, G.; Gossage, R. A.; McDonald, R.; Cavell, R. G. Organometallics 2003, 22, 2832-2841 (erratum 5378).
(8) Lin, G.; Jones, N. D.; Gossage, R. A.; McDonald, R.; Cavell, R. G. Angew. Chem., Int. Ed. 2003, 42, 4054-4057.
(9) Schmidbaur, H.; Hasslberger, G.; Deschler, U.; Schubert, U.; Kappenstein, C.; Frank, A. Angew. Chem., Int. Ed. Engl. 1979, 18, 408-409.
(10) Bruce, A. E.; Gamble, A. S.; Tonker, T. L.; Templeton, J. L. Organometallics 1987, 6, 1350-1352.
(11) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-91.
(12) Ramirez, F.; Desai, N. B.; Hansen, B.; McKelvie, N. J. Am. Chem. Soc. 1961, 83, 3539-3540.
(13) Despagnet, E.; Miqueu, K.; Gornitzka, H.; Dyer, P. W.; Bourissou, D.; Bertrand, G. J. Am. Chem. Soc. 2002, 124, 11834-11835.
(14) Vicente, J.; Singhal, A. R.; Jones, P. G. Organometallics 2002, 21, $5887-$ 5900 and references therein.
(15) B3LYP/LANL2DZ. Frisch, M. et al. Gaussian 98, 2002. For full citation, see the Supporting Information.
(16) Cantat, T.; Mézailles, N.; Ricard, L.; Jean, Y.; Le Floch, P. Angew. Chem., Int. Ed. 2004, 43, 6382-6385.
JA0502831

[^0]: \dagger Hiroshima University.
 \# University of Alberta.

